Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy

Identifieur interne : 000324 ( Chine/Analysis ); précédent : 000323; suivant : 000325

Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy

Auteurs : RBID : Pascal:13-0239781

Descripteurs français

English descriptors

Abstract

We investigate the reduction in the efficiency of band-edge radiative recombination in InN by two carrier recombination processes via mid-gap states: radiative recombination via deep states and nonradiative recombination (NR). Because of the small band-gap energy value and the existence of the surface electron accumulation layer, the carrier transition processes via deep states cannot be observed easily. We address this problem by using mid-infrared photoluminescence (PL) measurements, and observe an emission peak around 0.32 eV at room temperature, which we interpret as being caused by transition processes via deep-defect states. Since this emission is weaker than the band-edge emission, the dominant carrier recombination process is concluded to be NR by phonon emission. The NR rate is known to be determined by the NR defect density, carrier transport processes to NR defects, and thermal activation processes of carriers. Carrier transport and capture processes by NR defects are investigated using p-type samples for various carrier mobility values. It is concluded that the NR rate is highly affected by the carrier transport, and that the candidates for the NR defect species are point defects and complexes of acceptor nature. We have also observed the correlation between the thermal conductivity and the band-edge PL intensity. As a result, we have found that the NR rate is highly affected by the carrier transport and thermal activation processes in InN.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0239781

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy</title>
<author>
<name sortKey="Imai, D" uniqKey="Imai D">D. Imai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Graduate School of Electronic and Electric Engineering, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ishitani, Y" uniqKey="Ishitani Y">Y. Ishitani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Graduate School of Electronic and Electric Engineering, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujiwara, M" uniqKey="Fujiwara M">M. Fujiwara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Graduate School of Electronic and Electric Engineering, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, X Q" uniqKey="Wang X">X. Q. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kusakabe, K" uniqKey="Kusakabe K">K. Kusakabe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Center for SMART Green Innovation Research, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshikawa, A" uniqKey="Yoshikawa A">A. Yoshikawa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Center for SMART Green Innovation Research, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0239781</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0239781 INIST</idno>
<idno type="RBID">Pascal:13-0239781</idno>
<idno type="wicri:Area/Main/Corpus">000A53</idno>
<idno type="wicri:Area/Main/Repository">001147</idno>
<idno type="wicri:Area/Chine/Extraction">000324</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor center</term>
<term>Accumulation layers</term>
<term>Activation energy</term>
<term>Band structure</term>
<term>Carrier density</term>
<term>Carrier mobility</term>
<term>Charge carrier recombination</term>
<term>Charge carrier trapping</term>
<term>Complex defect</term>
<term>Deep level</term>
<term>Defect density</term>
<term>Defect states</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>III-V compound</term>
<term>Indium nitride</term>
<term>Infrared spectra</term>
<term>Infrared spectroscopy</term>
<term>Mid infrared radiation</term>
<term>Non radiative recombination</term>
<term>Phonon emission</term>
<term>Photoluminescence</term>
<term>Point defects</term>
<term>Radiative recombination</term>
<term>Recombination process</term>
<term>Surface layers</term>
<term>Surface segregation</term>
<term>Thermal activation</term>
<term>Thermal conductivity</term>
<term>Thin films</term>
<term>Transport processes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recombinaison non radiative</term>
<term>Recombinaison porteur charge</term>
<term>Processus recombinaison</term>
<term>Composé III-V</term>
<term>Couche mince</term>
<term>Rayonnement IR moyen</term>
<term>Spectrométrie IR</term>
<term>Spectre IR</term>
<term>Recombinaison radiative</term>
<term>Bande interdite</term>
<term>Niveau profond</term>
<term>Propriété électronique</term>
<term>Structure bande</term>
<term>Couche superficielle</term>
<term>Nitrure d'indium</term>
<term>Ségrégation surface</term>
<term>Couche accumulation</term>
<term>Photoluminescence</term>
<term>Etat défaut</term>
<term>Emission phonon</term>
<term>Densité défaut</term>
<term>Densité porteur charge</term>
<term>Mobilité porteur charge</term>
<term>Phénomène transport</term>
<term>Défaut ponctuel</term>
<term>Activation thermique</term>
<term>Energie activation</term>
<term>Piégeage porteur charge</term>
<term>Défaut complexe</term>
<term>Centre accepteur</term>
<term>Conductivité thermique</term>
<term>InN</term>
<term>7866</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigate the reduction in the efficiency of band-edge radiative recombination in InN by two carrier recombination processes via mid-gap states: radiative recombination via deep states and nonradiative recombination (NR). Because of the small band-gap energy value and the existence of the surface electron accumulation layer, the carrier transition processes via deep states cannot be observed easily. We address this problem by using mid-infrared photoluminescence (PL) measurements, and observe an emission peak around 0.32 eV at room temperature, which we interpret as being caused by transition processes via deep-defect states. Since this emission is weaker than the band-edge emission, the dominant carrier recombination process is concluded to be NR by phonon emission. The NR rate is known to be determined by the NR defect density, carrier transport processes to NR defects, and thermal activation processes of carriers. Carrier transport and capture processes by NR defects are investigated using p-type samples for various carrier mobility values. It is concluded that the NR rate is highly affected by the carrier transport, and that the candidates for the NR defect species are point defects and complexes of acceptor nature. We have also observed the correlation between the thermal conductivity and the band-edge PL intensity. As a result, we have found that the NR rate is highly affected by the carrier transport and thermal activation processes in InN.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2012 Electronic Material Conference</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>IMAI (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ISHITANI (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FUJIWARA (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (X. Q.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUSAKABE (K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YOSHIKAWA (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CALDWELL (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GOLDMAN (R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PHILLIPS (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>JURCHESCU (O.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SHAHEDIPOUR-SANDVIK (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>SALLEO (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>XING (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>XU (K.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Graduate School of Electronic and Electric Engineering, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Laboratory of Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center for SMART Green Innovation Research, Chiba University</s1>
<s2>Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>875-881</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000173389490170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0239781</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We investigate the reduction in the efficiency of band-edge radiative recombination in InN by two carrier recombination processes via mid-gap states: radiative recombination via deep states and nonradiative recombination (NR). Because of the small band-gap energy value and the existence of the surface electron accumulation layer, the carrier transition processes via deep states cannot be observed easily. We address this problem by using mid-infrared photoluminescence (PL) measurements, and observe an emission peak around 0.32 eV at room temperature, which we interpret as being caused by transition processes via deep-defect states. Since this emission is weaker than the band-edge emission, the dominant carrier recombination process is concluded to be NR by phonon emission. The NR rate is known to be determined by the NR defect density, carrier transport processes to NR defects, and thermal activation processes of carriers. Carrier transport and capture processes by NR defects are investigated using p-type samples for various carrier mobility values. It is concluded that the NR rate is highly affected by the carrier transport, and that the candidates for the NR defect species are point defects and complexes of acceptor nature. We have also observed the correlation between the thermal conductivity and the band-edge PL intensity. As a result, we have found that the NR rate is highly affected by the carrier transport and thermal activation processes in InN.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Processus recombinaison</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Recombination process</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Proceso recombinación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Rayonnement IR moyen</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mid infrared radiation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Radiación infrarroja media</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Spectrométrie IR</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Infrared spectroscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre IR</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Infrared spectra</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche superficielle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface layers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Ségrégation surface</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Surface segregation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche accumulation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Accumulation layers</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Emission phonon</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Phonon emission</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Emisión fonón</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Défaut ponctuel</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Point defects</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Activation thermique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thermal activation</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Termoactivación</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Energie activation</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Activation energy</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Défaut complexe</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Complex defect</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Defecto complejo</s0>
<s5>42</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Centre accepteur</s0>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Acceptor center</s0>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Centro aceptor</s0>
<s5>43</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>44</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMC 2012 Electronic Material Conference</s1>
<s3>University Park, PA USA</s3>
<s4>2012-06-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000324 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000324 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0239781
   |texte=   Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024